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The results of grand canonical Monte Carlo study of two-dimensional lattice gas model

of network-forming particles on a triangular lattice are reported. The model takes into ac-

count the effects of molecular association, resulting from the orientation-dependent in-

teractions as well as the effects of cooperative interactions, which lead to the weakening

of the bond energies. A phase transition between the dilute and the condensed phase is

considered. Phase diagrams for different systems are presented and it is shown that the

systems studied belong to the universality class of two-dimensional Ising model.
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Thermodynamic behavior and structural properties of associating systems are of

increasing interest in basic research [1–7]. Also, in many processes of practical and

technological importance, the formation of networks resulting from molecular asso-

ciation is of importance. The best known examples of substances that exhibit the

association induced network structures are water [8,9] and silica [10,11]. In the super-

cooled state, as well as in the solid state, such systems exhibit phase transitions be-

tween differently bonded structures [10,12]. Other examples of networking systems

are those, which exhibit polyamorphism [13].

Recently, Roberts and Debenedetti [14] have proposed a lattice gas model, which

captures several important factors that determine thermodynamic behavior and the

internal structure of such network-forming systems. The model has been solved in a

three-dimensional space on the bcc lattice within the mean-field approximation and

later was also studied by the canonical ensemble Monte Carlo simulation [15]. It has

been demonstrated that the presence of strong orientation-dependent interactions

leads to the first-order liquid– liquid transition and may induce immiscibility of those

different phases over a certain temperature range. A noticeable qualitative agreement

between the approximate mean-field solution and the Monte Carlo simulation results

has been observed. One of the most interesting results of that study was the demon-
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stration that the liquid–liquid equilibrium shows both the upper and the lower critical

temperatures under suitable conditions. It has been argued that the presence of the

lower critical point is directly connected to entropic contributions to the free energy

of the high density condensed phase.

It should be emphasized that other theoretical models of network-forming sys-

tems usually assume explicit density dependence of the strength of the molecular in-

teractions [16,17] or allow the molecules in the system to exist in more than one state

[18]. The model proposed by Roberts and Debenedetti [14] does not introduce any

such explicit relation between the density and the strength of molecular interactions

and hence is much more general and more realistic.

In two-dimensions the behavior of network-forming systems should be qualita-

tively different from the behavior of systems in a three-dimensional space, mostly

due to considerably enhanced effects of statistical fluctuations [19]. In particular, one

can expect that in two-dimensional space the systems should exhibit considerably re-

duced tendency to undergo sharp first-order transitions between the condensed

phases [20]. It should be stressed that two-dimensional network-forming fluids are

also of experimental interest. Here, we can invoke monolayers of adsorbed associat-

ing particles as water [21] and organic particles, such as crystal violet [22].

In our recent paper [7] we have presented a two-dimensional modified version of

the model presented in [14] and discussed the phase behavior of systems character-

ized by rather strong association energy and different cooperative effects. It has been

argued that the transition between different condensed phases occurs via the sec-

ond-order phase transition. Also, it has been demonstrated that this transition extents

from the ground state to a certain temperature Tt, which is considerably lower than the

corresponding gas–liquid critical temperature Tc. Below Tt we have found also the

first-order transition between a dilute (gas) phase and a condensed phase of the or-

dered structure. On the other hand, above the temperature Tt only one first-order tran-

sition between a gas phase and an amorphous condensed phase occurs and it

terminates in the critical point. Sufficiently strong cooperative effects, which lead to

the weakening of the association interaction, have been found to introduce important

qualitative changes to the topology of phase diagrams. In particular, the transition be-

tween a dilute and a condensed phase does not terminate at a critical point but rather

ends at a tricritical point, so that at still higher temperatures a continuous transition

between the gas and the liquid phase is found.

In this work we present the results of a further study of the model described in [7],

and consider systems characterized by a lower strength of the association energy and

different contributions due to cooperative effects. Our primary aim is to show that the

histogram reweighting Monte Carlo method can be efficiently used to determine criti-

cal properties of such network forming systems and to determine the universality

class of the model. Besides, we wish to elucidate the effects of orientation-dependent

forces on the internal structure of a two-dimensional condensed phase.
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The paper is arranged as follows: First we present the model used and discuss

briefly its ground state properties. Then, we give a detailed description of the Monte

Carlo simulation method used. The results of our calculations are presented and dis-

cussed later.

MODEL

We consider a simple two-dimensional hexagonal lattice and assume that each

site can be empty or occupied by a single particle. Each particle placed on a site is then

assumed to have three equivalent bonding arms, that form the angle 120� one with

each other. Orientational degrees of freedom are taken into account by assigning to

each particle a set of six Potts-like variables �i,k, k = 1,2, ..., 6. Here we assume that �i,k = 1,

when k corresponds to any of the bonding arms and equals to zero in the remaining

three directions. Since all bonding arms are fully equivalent, the molecule located on

site i can take two distinguishable states with respect to the chosen coordination sys-

tem. Thus, the Potts-like variables �i,k may be equal to (1,0,1,0,1,0) or (0,1,0,1,0,1),

depending on its orientation relative to the surface lattice.

Two molecules located on a pair of adjacent sites interact one with another with

the orientation independent (attractive) energy �o and can also form a bond of the en-

ergy �b, whenever the orientation of their bonding arms is suitable, i.e., when the

Potts-like variables of the arms pointing to each other are both equal to 1. The above

bond formation mechanism is slightly different than in the three-dimensional model

of [14], where Potts variables assumed different values for each arm and the bond

could form only when both Potts variables of adjacent molecules were the same. Fol-

lowing the model considered in [14], we also assume that each occupied site, adjacent

to both bond-forming molecules. weakens the bond energy by c�b/2, where c � [0,1],

and the factor 1/2 results from the presence of two such weakening sites (cf. Fig. 1).

With the above assumptions the potential energy of any specified configuration of the

system reads
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Figure 1. Bonded sites (filled circles) and bond weakening sites (open circles). Each bond weakening

sites acts on two adjacent bonds (solid lines).
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where ni denotes the usual occupation variable, equal to 0 (1) when the site i is empty

(occupied), the first two summations are taken over all nearest neighbor pairs of sites,

the third sum runs over all bond weakening sites and 
 � �i m j n, ,
= 1(0), when �i,m = �j,n

(�i,m � �j,n).

In the grand canonical ensemble, the Hamiltonian for the above model is then

given by

H = E({ni}) – � ni

i

	 (2)

where � is the chemical potential and the sum runs over all lattice sites. An analysis of

the ground state behavior of (2) showed that the system properties depend strongly on

the bonding energy �b, as well as on the parameter c. Apart from the trivial dilute (gas)

phase, with all ni = 0 at T = 0 and with the free energy equal to zero, there can also ap-

pear different ordered condensed phases. One possible ordered state corresponds to a

fully bonded honeycomb lattice of the density equal to 2/3, in which a central site of

every hexagon of occupied sites is empty. This open honeycomb phase (O) has the

free energy (per lattice site) given by

O = –�o – �b – (2/3)� (3)

Note that O does not depend on c. Other ordered states correspond to a fully occupied

lattice. In this situation there are several different structures possible. One obvious

case corresponds to the closed honeycomb (C) structure, which is obtained from the

open honeycomb structure by filling all central sites by the adsorbate particles. The

free energy of this phase is given by

C = –3�o – �b(1 – c) – � (4)

There are still other ordered states possible, but all of them have a higher free energy

than the above mentioned phases and hence are not stable at T = 0. The above discus-

sion demonstrates that the ground state of a completely filled lattice is highly degen-

erated. Both phases, O and C, are degenerated as the empty (in phase O) or occupied

but not bonded (in phase C) sites can belong to one of seven different sublattices.

Note, that in the case of a completely occupied lattice, all bonds are always fully

weakened, independently of the internal structure. Therefore, in the case of c = 1 all
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possible orientations of the particles are completely equivalent. Thus, the probability

that a single particle will form i bonds (i = 0, 1, 2 or 3) is given by

p i
i i
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�

�
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8

3

3
(5)

From the expressions for the free energy of the ordered states O and C (or Z), given by

(3) and (4), it follows that at the ground state the open honeycomb structure should be

stable only when the reduced strength of the bonding energy� b

* = �b/�o is greater than 1

and when the parameter c is such that

c
b

� �
3

2
05

�*
. (6)

In this paper we consider a series of systems characterized by � b

* = 1.0 and by dif-

ferent values of c equal to 0 and 1. All the energy-like quantities are expressed in units

of �o, e.g., T* = kT/�o, �* = �/�o, etc. For such a choice of the association energy, only

one condensed phase can be formed at T* = 0 and it corresponds to a fully occupied

lattice.

Computational method: A finite temperature behavior of the above presented

model has been studied by a Monte Carlo method in the grand canonical ensemble

[23]. The calculations have been carried out for a rhombus simulation cell consisting

of L � L sites with the standard periodic boundary conditions in both directions, using

of different size ranging between L = 36 and L = 84. A typical run consisted of 105–108

Monte Carlo steps (per site) (MCS), depending on the temperature. In each run a simi-

lar number of MC steps has been used to equilibrate the system. To ensure that the

equilibrium state was reached, we have monitored the behavior of the system energy

and density. In order to avoid the effects of strong correlations between subsequently

generated states, the averages have been calculated using the configurations gener-

ated in the Monte Carlo steps, spaced by a certain number k of omitted Monte Carlo

steps. In most cases it has been found sufficient to use the k between 10 and 50. The

quantities recorded have been the average energy (per site) u and the density �. Since

the main purpose of study was to obtain information about the critical behavior of the

model, we have performed calculations for systems of different size, in order to use fi-

nite size scaling. To characterize the effects of association, the concentrations of dif-

ferently bonded and nonbonded particles have been also calculated. The histogram

reweighting and finite size scaling techniques [24–27] have been used to study the

critical behavior of the model. Thus, the two-dimensional histograms PL(�,u) have

been calculated for a series of systems of different size L. Then, the joint distribution

P(�,u) has been constructed. This distribution allows to calculate all the moments re-

quired to apply the finite size scaling analysis [24]. Apart from the calculations of the
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above mentioned basis quantities (u and �), we have also calculated the second mo-

ment and the 4th-order cumulant of the order parameter (m) given by

U
m

m
L

L

L

� �1

3

4

2
2

(7)

where m = � – ���L Far above the critical point, the density distribution is a single

gaussian, so that UL = 0, while well below Tc, the cumulant reaches also the trivial

fixed point UL = 2/3. In the vicinity of critical point cumulants show a strong depend-

ence on the system size. At Tc, however, the cumulants of different size meet at the

nontrivial fixed point U*. The magnitude of U* depends on the universality class of

the transition. The densities at a two-phase coexistence have been determined from

either the calculated isotherms, as well as from the block density distribution func-

tions [24].

The coexistence curve has been determined from a “two-state” approximation

[28] from the density distribution � ( )P � = �uP(�,u), which, close to the critical point,

exhibits a double peaked structure with a shallow minimum. The precise location of

the coexistence has been found by tuning the chemical potential at any given tempera-

ture, until the areas under the two peaks of � ( )P � have become identical.

RESULTS AND DISCUSSION

We begin with the presentation of typical isotherms for the systems characterized

by the parameter c = 0.0 (Fig. 2a) and c = 1.0 (Fig. 2b) obtained at different tempera-

tures below Tc

ast . From the isotherms calculated at different temperatures we have

constructed the phase diagrams for both systems (see Fig. 3). One readily notes that

the introduction of bond weakening effect (c = 1.0) leads to a considerable reduction

of the critical temperature and to a lowering of the critical density. Before a detailed

discussion of critical properties of the model, which is the primary aim of this work,

we consider the differences in the structure of the condensed phase for the systems

with c = 0.0 and c = 1.0. We denote the probability that a given particle has i bonds (i =

0, 1, 2, 3) by pb(i), and the concentration of particles in the state i by cb(i) = �pb(i) . Of

course, the following normalizing condition is satisfied

� � 	 c ib

i

( ) (8)

Note, that in the case of c = 1.0, the presence of bonds is expected to have a small

influence on the system structure at high densities. In particular, when � approaches

unity, the concentrations of differently bonded and unbonded particles (cb(i), i = 0, 1,
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2 and 3) are expected to reach the values po(i), predicted by (5). The above prediction

is quite well supported by the results shown in Figure 4, which presents the changes of

cb(i) versus chemical potential at two different temperatures below the critical point

for the system with c = 1.0. On the other hand, when the bond weakening parameter c

is equal to zero, the condensed phase behaves differently, as it demonstrates Fig. 5. In

particular, the number of bonded particles is considerably higher than in the previous
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Figure 2. Adsorption isotherms at various temperatures. Part a shows results for c = 0 at T* = 0.6 (filled

squares); T* = 0.8 (open circles) and at T* = 1 (filled circles). Part b is for c = 1 and at T* = 0.4

(open squares); T* = 0.8 (filled circles) and at T* = 0.75 (open circles).

a

b



case. We also observe that the contribution of particles, which form three bonds, in-

creases when the temperature becomes lower. From the above discussion it follows

that the effect of cooperativity is rather quantitative only. In particular, we expect that

the both systems studied here belong to the same universality class of 2D Ising model

[29]. In order to verify this hypothesis, we have estimated the critical exponents � and

�, using the finite size scaling analysis. Figure 6 presents the density distribution

functions � ( )P � along the coexistence curve, obtained at different temperatures (near

Tc

*) for both systems. It is quite well seen that in the case of c = 0 the distribution � ( )P �

is fully symmetric, while for c = 1 the distribution lacks a full symmetry. Thus, the

peak at the gas phase side is sharper and higher than the peak at the liquid phase side.

The critical temperatures have been estimated from the plots of UL for different L ver-

sus temperature (see Fig. 7). In both cases (c = 0 and c = 1) the fixed point value U* of

the cumulants UL has been found to be equal to 0.61. This is exactly the value of U* for

the two-dimensional Ising model [24]. The critical temperature for the system with c

= 0 has been estimated as equal to 1.137�0.001, while in the case of c = 1 Tc

*=

0.7755�0.0005. One should remember that the above method is not biased by any as-

sumptions concerning the universality class and the knowledge about of the critical

exponents is not required. The critical exponent � can be also evaluated from the be-

havior of cumulants for systems of different size. When the values of L are big enough

and the corrections to scaling are negligible, the exponent � can be found from

�–1 = [ln(
UbL/
UL)/ln(b)]U* (9)
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Figure 3. Phase diagram for c = 1 (open circles) and for c = 0 (filled circles). Triangles and squares denote

the line (�l + �g)/2.



where b = L�/L. Figure 8 demonstrates that in both cases of c = 0 and 1 the exponent � is

very close to 1.0. Having the value of �, we can also estimate the critical exponent �,

which describes the behavior of the order parameter (m) near the critical point.

Namely, the finite size scaling of the second moment of the order parameter leads to

the equation [24]
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Figure 4. Concentrations of differently bonded and unbonded particles versus chemical potential for the

system with c = 1 at two reduced temperatures: 0.4 (part a) and 0.75 (part b).

a

b



2�/� = –ln[�m2�bL,Tc/�m
2�L,Tc]/ln(b) (10)

The results of our calculations are presented in Figure 9 and show that in both systems

we have 2�/� � 0.25 and hence � � 0.125. The estimated exponents � and � confirm

that our systems belong to the universality class of the two-dimensional Ising model
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Figure 5. The same as in Fig. 4, but for the system with c = 0 at the reduced temperature 0.6 (part a) and

1.0 (part b).
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[29]. The results shown in Figs. 7–9 demonstrate also, that the critical temperature

and exponents can be evaluated with a very high precision. In this paper we present

the results of extensive Monte Carlo simulation of two-dimensional lattice model of

associating fluid. Our primary aim was to check, how the histogram reweighting tech-

nique, together with the finite size scaling analysis, works in the case of such complex

systems. It should be emphasized that the histogram reweighting method has not been

Application of histogram reweighting Monte Carlo... 567

Figure 6. The distributions P(�) at different temperatures close to the critical temperature. Parts a and b

are for the systems with c = 0 and c = 1, respectively.

a

b
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Figure 7. Cumulant intersection plot for the systems of different size: L = 72 (solid line), L = 60 (dotted

line); L = 48 (long-dashed line) and L = 36 (dashed line).

Figure 8. Evaluation of the critical exponent 1/�. Lower panel is for the system with c = 0, whereas upper

panel – for the system with c = 1.



previously used to study models, which take into account association between the

particles [30–32].

We estimate the critical temperatures and critical exponents for two different sys-

tems and find that both belong to the universality class of the two-dimensional Ising

model. Of course, the results presented here correspond to a rather simple situation. In

particular, the model predicts that for higher energy of association [7] the topology of

the phase diagram changes and that there is more than one condensed phase. Already

the ground state analysis suggests that in such cases the model belongs to different

universality class. We plan to apply similar techniques to investigate strongly associ-

ating systems and the results of our study will be presented in the next paper.
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